

Stable Enols of Amides ArNHC(OH)=C(CN)CO₂R. E/Z Enols, Equilibria with the Amides, Solvent Effects, and Hydrogen Bonding

Yi Xiong Lei, Daniele Casarini, Giovanni Cerioni, and Zvi Rappoport*,

Department of Organic Chemistry, The Hebrew University, Jerusalem 91904, Israel; Chemistry Department, University of Basilicata, 80100 Potenza, Italy; Dipartimento Farmaco Chimico Tecnologico, Universita di Cagliari, I-09124 Cagliari, Italy

zr@vms.huji.ac.il

Received July 11, 2002

The structures of anilido cyano(fluoroalkoxycarbonyl)methanes ArNHCOCH(CN)CO₂R, where R = CH_2CF_3 or $CH(CF_3)_2$, $Ar = p-XC_6H_4$, and X = MeO, Me, H, or Br, were investigated. In the solid state, all exist as the enols ArNHC(OH)= $C(CN)CO_2R$ 7 ($R = CH_2CF_3$) and 9 ($R = CH(CF_3)_2$) with cis arrangement of the hydrogen-bonded ROC=O···HO moiety and a long C1=C2 bond. The product composition in solution is solvent dependent. In CDCl₃ solution, only a single enol is observed, whereas in THF- d_8 and CD₃CN, two enols (E and Z) are the major products, and the amide is the minor product or not observed at all (K_{Enol} 1.04–9 (CD₃CN, 298 K) and 3 to \geq 100 (THF, 300 K)). The percentage of the amide and the Z-enol increase upon an increase in temperature. In all solvents, the percent enol is higher for 9 than for 7. In CD₃CN, more enol is observed when the aryl group is more electron-donating. The spectra in DMSO- d_6 and DMF- d_7 indicate the presence of mostly a single species, whose spectra do not change on addition of a base and is ascribed to the anion of the ionized carbon acid. Comparison with systems where the CN is replaced by a CO₂R group (R = CH₂CF₃, CH(CF₃)₂) shows a higher percentage of enol for the CN-substituted system. Intramolecular (to CO₂R) and intermolecular hydrogen bonds determine, to a significant extent, the stability of the enols, their Z/E ratios (e.g., Z/E (THF, 240 K) = 3.2-4.0 (7) and 0.9-1.3 (9)), and their $\delta(OH)$ in the ¹H spectra. The interconversion of Z- and E-enol by rotation around the C=C bond was studied by DNMR, and ΔG^{\ddagger} values of ≥ 15.3 and 14.1 ± 0.4 kcal/mol for **Z-7** and **Z-9** were determined. Features of the NMR spectra of the enols and their anions are discussed.

Introduction

Our previous investigations on stable enols of carboxamides activated by two electron-withdrawing groups (EWG)Y,Y' (1)¹⁻³ had shown that with Y,Y' = CO₂R, CO₂R', equilibria with the amides **2** is established in solution and that several of the **1/2** systems exist as enols **1** in the solid state. A systematic change by replacing the Y = Y' = CO₂Me groups by the ester groups CO₂CH₂CF₃ and CO₂CH(CF₃)₂ with an increasing number of fluorines had shown that the percentage of the enol **3**, i.e., in the **3/4** mixture expressed as $K_{\rm Enol} =$ [1]/[2] at equilibrium increases when Y,Y' become more electron withdrawing (**3e** > **3d** > **3c** > **3b** > **3a**). Systems with \geq 6 fluorines in Y,Y'³ or when YY' is a Meldrum's acid residue¹ exist in the solid as the enols **3**. When the polarity of the solvent is increased from CCl₄ and CDCl₃ to CD₃CN and DMSO-

 $\begin{array}{ccc} \text{ArNHC}(\text{OH}) = & \text{C}(\text{CO}_2\text{R})\text{CO}_2\text{R}' & \text{ArNHCOCH}(\text{CO}_2\text{R})\text{CO}_2\text{R}' \\ & \textbf{3} \ \ (\text{E and Z}) & \textbf{4} \end{array}$

a: R = R' = Me b: R = Me, R' = CH₂CF₃ c: R = Me, R' = CH(CF₃)₂ d: R = R' = CH₂CF₃ e: R = CH₂CF₃; R' = CH(CF₃)₂ Ar = p-XC₆H₄, X = MeO, Me, H, Br

 d_6 , $K_{\rm Enol}$ decreases. Whereas in the chlorinated solvents the enols are mostly the major component, they are observed only for the highly fluorinated systems in CD₃-CN, and no enol was observed in DMSO- d_6 . E- and Z-enols were observed in solution for **3b**,**c**,**e**. DFT calculations⁴ had shown that the enols are stabilized by β -EWGs, presumably by the contribution of the push–pull valence bond hybrid **1a** of the enol, with a consequent increase in $K_{\rm Enol}$. These groups also destabilize the amide form **2** (presumably by dipole–dipole CO/Y,Y'

^{*} To whom correspondence should be addressed.

[†] The Hebrew University

[‡] University of Basilicata

[§] Universita di Cagliari

⁽¹⁾ Mukhopadhyaya, J. K.; Sklenak, S.; Rappoport, Z. *J. Am. Chem. Soc.* **2000**, *122*, 1325.

⁽²⁾ Mukhopadhyaya, J. K.; Sklenak, S.; Rappoport, Z. *J. Org. Chem.* **2000**. *65*. 6856.

⁽³⁾ Lei, Y. X.; Cerioni, G.; Rappoport, Z. J. Org. Chem. **2001**, 66, 8379

ArNHC(OH)=CYY' ArNHCOCHYY'
1 2

^{(4) (}a) Sklenak, S.; Apeloig, Y.; Rappoport, Z. *J. Am. Chem. Soc.* **1998**, *120*, 10359. (b) Rappoport, Z.; Lei, Y. X.; Yamataka, H. *Helv. Chim. Acta* **2001**, *84*, 1405.

interaction^{4b}), thus contributing to the increase in $K_{\rm Enol}$. Hydrogen bonding between the enolic OH group and the group Y and/or Y' was also deduced to be of major importance in stabilizing the enols^{1,3} and in affecting $K_{\rm Enol}$, the relative E/Z ratios when Y \neq Y', and the δ -(OH) and δ (NH) chemical shifts.³

Extensions to other systems where both $Y,Y'\neq CO_2R$, CO_2R' are so far limited. Two cyano groups (Y,Y'=CN) seem to stabilize the enols more than two CO_2Me groups both computationally and experimentally. A small amount of enol was observed when $Y=CO_2Me$, $Y'=NO_2$; nitromalondiamide is an enol in the solid state, and few examples are known for enols of amides when Y,Y'=CO groups. She Amide 5, where Y=CN, $Y'=CO_2Me$, and $Y'=CO_2M$

For a systematic study of the effect of β -substituents on the stabilization of the enols, we want to extend the study of systems **3/4** to other systems. There are five prerequisites: (i) higher $K_{\rm Enol}$ than for **3a/4a** which exist as the amide **4a** in the solid and ca. 5% of **3a** in CDCl₃, (ii) having at least one hydrogen bond acceptor group, Y and/or Y', (iii) an ability to increase the EW ability of Y,Y' without affecting much the steric hindrance in the system, (iv) one group (Y or Y') with a relatively low steric effect, and (v) Y,Y' groups which will not be the enolization sites, as shown, e.g., for a Y,Y' = C=O groups. An ester group in a $C_{\beta}(\text{CONHAr})\text{CO}_{2}\text{R}$ moiety is known to be a less prone enolization site than an amido group, $^{1-3}$ and the calculated $K_{\rm Enol}$ for CH₃CO₂Me is lower than that for CH₃CONH₂. ^{4a}

These requirements are fulfilled for the combination of $Y=CO_2R$, Y'=CN. The cyano is a somewhat better electron-withdrawing group than an ester group, and the evidence above indicates that it enhances more the enol formation. Its linearity leads to relatively low steric demand, and it does not compete with CONHAr as an enolization site. The single ester group will enable hydrogen bonding stabilization of the enol, and modification of its EWG properties by fluorine substitution at its alkyl group will enable comparison with the known enol of amide ${\bf 5}.^2$

We hoped that these CN, CO_2R substituted systems will extend the range in which the enols were observed to solvents more polar than $CDCl_3$. However, the apparent increased acidity may lead to complete ionization of $RO_2CCH(CN)CONHAr$ in solution. We therefore prepared and studied several such systems.

Results

Synthesis. Reaction of cyanoacetyl chloride with 2,2,2-trifluoroethanol or 1,1,1,3,3,3-hexafluoroisopropanol in CH_2Cl_2 in the presence of N,N-dimethylaniline gave 2,2,2-trifluoroethyl or 1,1,1,3,3,3-hexafluoroisopropyl cyanoacetates. Their reaction with four p-X-substituted phenyl isocyanates (X = H, MeO, Me, Br) in the presence of Et_3N in DMF gave eight compounds which a priori could be the amides $(\mathbf{6a-d}, \mathbf{8a-d})$ or their enols $(\mathbf{7a-d}, \mathbf{9a-d})$.

$$NCCH_{2}COC1 + ROH \xrightarrow{PhNMe_{2}} NCCH_{2}COOR$$

$$\xrightarrow{p-XC_{6}H_{4}NCO, Et_{3}N} DMF$$

$$R = CF_{3}CH_{2}, (CF_{3})_{2}CH$$

p-XC₆H₄NHCOCH(CN)COOR and/or p-XC₆H₄NH \mathbf{E} and \mathbf{Z} COOR X = MeO $R = CF_3CH_2$ $R = CF_3CH_2$ 7b 6h X = Me7c 6c X = H $R = CF_3CH_2$ $R = CF_3CH_2$ 7d 6d X = Br $R = (C\tilde{F}_3)_2 \bar{C}H$ 8a X = MeO9b 8b X = Me $R = (CF_3)_2CH$ 8c X = H $R = (CF_3)_2CH$ 90

Amide 5 and enol 10 were prepared similarly earlier.2

 $\mathsf{R} = (\mathsf{CF}_3)_2 \mathsf{CH}$

R = Me

9d

X = Br

X = H

8d

Solid-State Structures. The solid-state structures of two compounds, representatives of the trifluoro 6/7 and the hexafluoro 8/9 series were determined by X-ray diffraction and found to be the enols 7a and 9b. In both, as well as in 10², the OH group is cis to and, according to the O···O nonbonding distances, is intramolecularly hydrogen bonded to the ester group. The NH group is intermolecularly hydrogen bonded to a CN group of another molecule. The ORTEP drawing of **9b** is shown in Figure 1, and its stereoview is in Figure S1; the ORTEP drawing and stereoview of 7a are given in Figures S2 and S3 of the Supporting Information. Selected bond lengths and angles are given in Table 1. General crystallographic information, all bond lengths and angles and position and thermal parameters for 9b and 7a are given in Tables S1-S10 in the Supporting Information.

The following features are important: (i) the C(1)-C(2) bonds of 1.410 ± 0.002 Å are very long for a C=C bond; (ii) the C(1)-O(1) bond of 1.31 Å is a single bond; (iii) the C(1)-N(1) bond length of 1.31-1.32 Å has a strong C=N bond character, (iv) the C(2)-C(3) and C(2)-C(6) bond of 1.41-1.42 Å are short for $C_{sp^2}-C_{sp^2}$ or $C_{sp^2}-C_{sp}$ bonds, (v) the O(1)-O(2) nonbonded distances of 2.51-2.54Å indicate a strong asymmetric ROC=O···OH hydrogen bond; (vi) the intermolecular N1'-N2 nonbonded distance of 2.94-2.99 Å indicates an NHN hydrogen bond, which is weaker than the OHO bond; (vii) bond angles around the C(1)-C(2) bond are close to 120° , with the O(1)-C(1)-N(1) angle of $116.6-116.9^\circ$ being the smallest; (viii) the twist angle of the double bond is small (e.g., 2.3° for **7a**).

^{(5) (}a) Simonsen, O.; Thorup, N. Acta Crystallogr., Sect. B: Struct. Sci. 1979, 35, 432, (b) Carrondo, M. A. A. F. de C. T., Matias, P. M.; Heggie, W.; Page, P. R. Struct. Chem. 1994, 5, 73. (c) Bordner, J. Acta Crystallogr., Sect. B: Struct. Sci. 1979, 35, 215. (d) Glatz, B.; Helmchen, G.; Muxfeldt, H.; Porcher, H.; Premo, R.; Senn, J.; Stezowski, J. J.; Stojda, R. J.; White, D. R. J. Am. Chem. Soc. 1971, 101, 2171. (e) Mukhopadhyaya, J. K.; Rappoport, Z. Unpublished results.

TABLE 1. Selected Bond Lengths (Å) and Angles (deg) for 7b and 9a at rt

bond	7b	$9a^a$	angle	7 b	9a ^a
C(1)C(2)	1.412 (5)	1.408(5)	O(1)C(1)N(1)	116.9(3)	116.6(3)
C(1)O(1)	1.308(4)	1.314(5)	O(1)C(1)C(2)	120. (3)	120.0(3)
C(1)N(1)	1.313(5)	1.321 (4)	N(1)C(1)C(2)	122.5(3)	123.4(3)
C(2)C(3)	1.415(5)	1.422(4)	C(3)C(2)C(6)	119.8(3)	120.9(3)
C(2)C(6)	1.417(5)	1.408(4)	C(3)C(2)C(1)	119.3(3)	118.4(3)
C(3)O(3)	1.351(5)	1.357(4)	C(1)C(2)C(6)	120.9(3)	120.7(3)
C(4)O(3)	1.423(5)	1.424(4)	C(1)N(1)C(7)	124.9(3)	126.9(3)
C(3)O(2)	1.226(5)	1.227(4)	O(1)HO(2)	137.7	155.7
C(6)N(2)	1.131(5)	1.141(4)	$N(1)HN(2')^{b}$	154.9	150.8
C(7)N(1)	1.435(4)	1.431(4)			
Ar	1.368(5) - 1.399(5)	1.367(5) - 1.377(5)			
O(1)H	1.18	1.12			
N(1)H	0.99	0.99			
O(2)···HO(1)	1.54	1.45			
N(2)···HN(1')	2.01	2.08			
$O(1)O(2)^{c}$	2.54	2.51			
$N(1)N(2')^c$	2.94	2.99			

^a The bond lengths and bond angles of a second crystallographically different molecule differ by 0−0.008 Å and 0.2−1.0°, respectively. ^b Intermolecular bond lengths. ^c Nonbonded distances.

TABLE 2. Solid-State 13 C CP-MAS Spectra (δ in ppm) of Systems 6/7 and 8/9 a

compound	$C_{\alpha}{}^{a}$	COO	CF_3	CN	CH/CH ₂	$C_{eta}{}^a$	$C-X^b$	C-N	$C_{o,m}$	X^b
6a/7a	171.6	171.6	ca. 126	118.1	60.7	57.1	159.6	126.4	126.4	54.5
6b/7b	171.5	171.5	ca. 126	117.5	60.4	57.2	136.3, 137.2	129.8, 131.2	ca. 125.3, ca. 126.0	19.7, 20.4
6c/7c	171.7	171.7	ca. 126	c	66.3	57.5		133.6	125.8, 128.7	
6d/7d	171.9	171.9	124.7	c	63.6	$57.3, 58.5^d$			133.1, 124.8	
8a/9a	173.1	169.7		114.7	66.7	56.9	159.0	129.8		53.2
8b/9b	170.8	170.8	ca. 126	С	65.7	56.7, 57.8	135.0	132.1	129.2, 129.2	20.1
8c/9c	172.6	170.3	ca. 128	117.0	65.6	57.0		132.5	128.1, 128.1	
8d/9d	171.6	170.4	126.7	115.1	65.1	57.4, 58.3	124.5	134.8	132.0	

^a The δ values measured in the CP-MAS traces were confirmed to belong to quaternary carbons by the CP-NQS sequence. ^b X=p-substituent in the Ar group. ^c The δ values are not given, since either the signals are not observed or they are too broad and overlap a neighboring signal. ^d The two signals are probably due to the presence of two molecules in the asymmetric unit.

FIGURE 1. ORTEP drawing of 9b.

Solid-State ¹³**C NMR Spectra.** A change of the arylring substituents did not change the solid-state structure of several compounds **3**. Since the structures of **7a**, **9b**,

and **10** are similar, we expect the other six compounds to also be enolic. This was corroborated by the solid-state ^{13}C NMR spectra of the eight systems (Table 2). In system **3**, the correspondence between the solid-state ^{13}C spectra and the solution ^{13}C spectra in cases where X-ray diffraction data were available enabled assignment of the solid-state structure. In the present case, we wondered if the intermolecular NH···NC hydrogen bond in the solid affected the ^{13}C shifts, whereas such strong interaction is absent in solution, as judged by the lack of concentration effect on the δ ^{13}C values (see below).

Broadening of signals in the solid state results in the overlap of neighboring signals, especially the CF $_3$ (which is sometimes 10 ppm broad) and CN signals (few of which have a very low intensity). However, comparison of the solid-state cross-polarization/magic-angle spinning (CP-MAS) δ^{13} C values for C_α , C_β , and COO, where the errors are ± 0.5 ppm with δ^{13} C in THF- d_8 or CD $_3$ CN solution for all compounds (Table 4) show remarkable similarity, indicating an enol structure for all the substrates in the solid. This was further corroborated by the cross-polarization/nonquarternary suppression (CP-NQS) spectrum 6 which unequivocally identifies quaternary carbons by nullifying the hydrogenated carbons' signals. All the signals at δ 56.7–58.5 show that no hydrogen is attached to C_β , thus excluding the amide structure (Table 2).

The differences $\Delta \delta_{\alpha,\beta} = \delta C_{\alpha} - \delta C_{\beta}$, are also character-

⁽⁶⁾ Harris, R. K.; Kenwright, A. M.; Packer, K. J. *Magn. Reson. Chem.* **1985**, *123*, 216. Opella, S. J.; Frey, M. H. *J. Am. Chem. Soc.* **1979**, *101*, 5854.

TABLE 3. δ (OH) and δ (NH) Values (ppm) for Z-Enols and E-Enols^a

			δ(0	OH)		δ(N	NH)		$\Delta(\delta(OH)$	− δ(NH))
comp	solvent	<i>T</i> , K	\overline{Z} -enol	<i>E</i> -enol	$\Delta\delta({\rm OH})^b$	\overline{Z} -enol	E-enol	$\Delta\delta({\rm NH})^b$	Z-enol	<i>E</i> -enol
7a	CDCl ₃	298	14.27			7.88			6.39	
7b		298	14.37			7.78			6.59	
7c		298	14.37			7.80			6.57	
7 d		298	14.49			7.88			6.61	
9a		298	13.56			8.22			5.34	
_		240	13.60			8.82	10.49	-1.67	4.78	
9b		298	13.65			8.18			5.47	
		240	13.63			8.68	10.57	-1.89	4.95	
9c		298	13.67			8.33	10.63	-2.30	5.34	
_		240	13.74			8.69	10.55	-1.86	5.05	
9d		298	13.68			8.39	10.62	-2.23	5.29	
		240	13.78			8.76	10.62	-1.86	5.02	
7a	$THF-d_8$	298	14.00			9.61	10.78	-1.17	4.39 4.37	
		240	14.31			9.94	10.79	-0.85	4.37	
		220	14.31	11.39	2.92	10.03	10.77	-0.74	4.28	0.59
7b		298	13.89			9.95	10.86	-0.91	3.94	
		240	14.40			10.01	10.96	-0.95	4.39	
7c		298				9.68	10.89	-1.31		
		280				9.80	10.90	1.10		
		260	14.42	11.09	3.33	9.91	10.93	-1.02	4.51	0.16
		240	14.47	11.24	3.23	10.03	10.95	-0.92	4.44	0.29
		220	14.48	11.38	3.10	10.15	10.96	-0.81	4.33	0.42
		200	14.47	11.52	3.10 2.95	10.26	10.96	-0.70	4.21	0.56
7d		298				9.73	10.89	-1.16		
		280				9.82	10.91	-1.09		
		260		11.04		9.95	10.92	-0.97		
		240	14.50	11.23	3.27	10.06	10.93	-0.87	4.44	0.30
		220	14.51	11.37	3.14	10.16	10.94	-0.78	4.35	0.43
		200 298	14.49	11.51	2.98	10.27	10.94	-0.67	4.22	0.57
9a		298				10.19				
		200	13.25	11.01	2.24	10.42	10.52	-0.10	2.83	0.49
9b		298	11.88			10.08			1.80	
		240	13.42	11.35	2.07	10.22	10.63	-0.41	3.20	0.72
		200	13.33	11.26	2.07	10.41	10.64	-0.23	1.80 3.20 2.92 1.38	0.62
9c		298	11.50			10.12			1.38	
		240	13.50	11.28	2.22	10.30	10.68	-0.38	3.20	0.60
9d		298	11.62			10.08			1.54 2.93 5.62	
		240	13.24	11.73	1.51	10.31	10.66	-0.35	2.93	1.07
7a	CD_3CN	298	14.04			8.42			5.62	
7b	-	298	14.09			8.45			5.64	
7c		298	14.04			8.52			5.52	
7 d		298	14.28			8.50			5.78	
9a		298	13.18			8.64	10.22	-1.58	4.54	
		240	13.07			8.81	10.19	-1.36	4.26	
9b		298	13.19			8.68	10.30	-1.62	4.51	
		240	13.12			8.85	10.28	-1.43	4.27	
9c		298	13.12 13.27			8.76	10.30	-1.54	4.53	
		240	13.18			8.91	10.34	-1.43	4.27	
9d		298	13.31			8.73	10.29	-1.56	4.58	
		240	13.38			8.88	10.28	-1.40	4.50	

^a Bold numbers are for conditions when only one enol was observed. ^b The difference of the shifts between Z-enol and E-enol.

istic. They are 113.4–116.2 ppm, whereas the value for the amide PhNHCOCH(CONH₂)₂ (106.9) is lower. However, this comparison involves an assumption that $\Delta\delta_{\alpha,\beta}$ for **1** and **2** is independent of Y and Y'.

The shifts in the solid state were estimated by the ACD-LAB additivity scheme for C_α , C_β , COO, and CN of four isomers which should be considered in a complete analysis: the amide (A), the enol (E), the imine-ol (I), and the enol on the ester group (EE) (Chart 1). Despite the approximations of the scheme, comparison with the experimental δ ¹³C values of C¹ and C³ at 171.5–171.9 for **6**/**7** and 170.8–173.1 for **8**/**9** and of C² = 57.1–58.5 for **6**/**7** and 56.7–58.3 for **8**/**9**, exclude the imine-ol (too high C¹), the enol on the ester (too low C¹), and the amide (too low C¹ and C²) structures.

Structure in Solution. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded for all systems in several solvents at several temperatures. Selected ¹H, ¹³C, and ¹⁹F NMR parameters are given in Tables 3–5, respectively, and

CHART 1. Estimated δ ¹³C Values

the complete NMR parameters are given in Tables S11–S13 of the Supporting Information. There are several species in solution, and their structure, substituent, solvent, and temperature-dependent distribution was investigated.

TABLE 4. 13 C NMR data for 6/7 and 8/9 systems in various solvents^a

comp.	solvent	T(K)	COO	$CON \ or \ C_{\alpha}$	CN	CH or C_{β}
9a-d	CDCl ₃	298	169.05-169.16	170.57-170.70	114.02-114.44	57.34-57.69
6a−d	$THF-d_8$	240	162.09 - 162.33	157.59-158.35	113.33-114.26	46.88 - 47.39
		298	162.03-162.24	157.69 - 158.15	112.98 - 113.11	46.96 - 47.03
Z-7a -d		240	171.53-171.62	172.57 - 172.66	114.44 - 114.82	57.66 - 58.56
		298	171.90 - 171.98	172.64 - 172.74	114.19 - 114.58	58.00 - 58.87
E-7a-d		240	168.67 - 168.91	168.05 - 168.24	116.19 - 116.53	59.17 - 60.10
		298	168.92 - 169.06	168.30 - 168.40	116.04 - 117.99	59.80 - 60.61
Z-9a -d		200	168.95 - 169.47	170.99 - 171.02	114.30-114.43	57.40 - 57.72
		240	169.06 - 169.23	171.30 - 171.41	113.82 - 114.00	57.93 - 58.44
		298	170.01	170.69 - 171.36	113.82 - 114.60	58.52 - 59.17
E-9a-d		200	165.80 - 166.04	169.35 - 169.56	116.00 - 117.55	58.78 - 58.88
		240	165.96-166.13	169.78 - 169.95	115.60 - 115.66	59.14 - 59.60
6a−d	CD_3CN	298	161.26-161.33	157.18-157.21	112.55 - 112.67	46.58 - 47.34
Z -7a-d		298	171.10 - 171.17	171.41 - 171.46	114.15 - 114.60	56.99 - 57.45
Z -9a-d		240	168.40 - 168.46	170.18 - 170.26	113.48-113.76	56.61 - 57.21
		298	168.51 - 169.05	170.85 - 170.89	113.60 - 113.94	57.19 - 57.89
6/7a-d	DMSO- d_6	298	166.98 - 167.74	166.25 - 166.43	120.00 - 121.19	57.53 - 59.23
8/9a-d		298	165.46 - 165.76	165.58 - 166.02	120.43-120.76	59.09 - 59.74
6/7a,c	$DMF-d_7$	220	168.83, 169.13	168.80, 168.20	121.75, 122.71	59.84, 60.50
6a		220	158.37	157.23	121.60	
6/7b,d		240	168.70, 169.01	168.05	121.45, 122.22	60.02, 60.40
6/7a-d		298	168.16-169.17	167.73-168.38	120.72-121.90	59.53-59.80
8/9a-d		220	166.55 - 166.82	167.10-167.30	121.64 - 121.98	59.99 - 60.66
		298	166.38 - 166.65	167.05 - 167.89	119.75 - 120.80	59.48 - 60.40

^a Signals for **8a**−**d** are too weak to be observed in THF-d₈.

TABLE 5. Selected ¹⁹F Chemical Shift (ppm) for Compounds 6-9

comp	solvent	T, K	Z-enol	<i>E</i> -enol	amide	ion
6a-d/7a-d 8a-d/9a-d 8a-c/9a-c	CDCl ₃ CDCl ₃	298 240 298	$-74.57 \pm 0.01 \ -73.82 \pm 0.02 \ -74.04 \pm 0.02$	-73.94 ± 0.01		
6a-d/7a-d	THF-d ₈	240	-74.55 ± 0.01	-75.50 ± 0.02	-75.21 -75.32	
8a-d/9a-d		298 200 240	-75.57 to $-75.65-76.89-76.98 \pm 0.01$	−75.27 to −75.36	-75.28 to -75.35	
6a-d/7a-d 8a-d/9a-d	CD ₃ CN	298 298 240 298	$-76.98 \pm 0.01 \ -75.44 \pm 0.01 \ -75.01 \pm 0.01 \ -74.98 \pm 0.02$	-75.03 ± 0.01	$-76.55 \\ -75.22 \pm 0.01$	
6a-d/7a-d 8a-d/9a-d	DMSO- d_6	298 298	74.50 ± 0.02			$\begin{array}{l} -73.32 \pm 0.01 \\ -73.36 \text{ to } -73.44 \end{array}$
6a-d/7a-d	DMF-d ₇	220 240			-74.44 -74.43 to -74.64	-74.64 -74.64 to -74.83
		298				−74.45 to −74.60
8a-d/9a-d		220				-74.41 to -74.54
		298				-74.35 to -74.54

In CDCl₃. The ¹H NMR spectra at 298 K differ for 6/7 and 8/9. The trifluoroesters 7 display signals for only one species: a broad OH signal at δ 14.27–14.49, one NH singlet at δ 7.78–7.88 (Table 3), aryl and CH₂ signals at δ 6.92–7.53 and 4.62–4.63, respectively, and p-MeO (δ 3.83) and p-Me (δ 2.36) signals. No C–H signals of an amide were observed. The ¹⁹F NMR spectra show only one signal (Table 5). Due to the low solubility ¹³C NMR spectra at rt or ¹H and ¹⁹F spectra at lower temperatures were not measured.

The hexafluoroesters **9** display at 298 K the OH, NH, Ar, and CH signals at δ 13.58–13.68 (br, 0.80–0.88H), 8.18–8.38, 6.93–7.54, and 5.82–5.83, respectively. The OH signal for **9d** is barely observed. All the compounds show a new 0.05–0.1H singlet at δ 10.5–10.6 (Table 3), and additional small signals overlap the main Ar signals.

At 240 K the lower field OH signal sharpened to a 1H signal for 9a-d. The NH signal shifted downfield by 0.4-0.7 ppm, but the 0.09-0.11H signal did not shift. New MeO and Me signals with ca. 10% intensity appear for 9a and 9b at ca. 0.01 ppm upfield of the main MeO and Me signals. The new and old aromatic signals overlapped. The ¹⁹F NMR spectra display two signals at δ ca. -73.8 and -73.9 in a 1.0:0.08 ratio at 240 K (Table 5), with minor differences at 298 K. The ¹³C NMR spectra at 298 K display signals at δ ca. 170.6 (C $_{\alpha}$), 169.1 (COO), 120.3 (CF₃), 114.2 (CN), 114.5-151 (Ar), 66.8 (CH(CF₃)₂), 57.5 (C_{β} , no C-H coupling), and 55.40 (MeO of **9a**) or 20.94 (Me of 9b) (Tables 4 and S12). The data are consistent with the formation of two enols at an ca. 10:1 ratio. Evidence that they are the *Z*- and *E*-enols is given below.

TABLE 6. 1H and 13C NMR Chemical Shifts for the Species Formed from 9c and Et₃N in THF-d₈ at 240 K

hydrogen	δ ¹ H, ppm (<i>J</i> , Hz) ^a	$\Delta\delta^1\mathrm{H,ppm}^a$	carbon	δ ¹³ C, ppm (<i>J</i> , Hz)	$\Delta \delta^{13}$ C, ppm ^a
NH	10.48	0.18	C_{α}	169.33 (d, <i>J</i> = 5)	-2.08
acidic H	9.11		COO	166.73	-2.47
Ph-H	7.59 (d, J = 7.9)		C_{ipso}	140.51 (t, J = 9.6)	4.66
Ph-H	7.29 (t, J = 7.8)		C_0	129.52 (dd, $J_1 = 158$, $J_2 = 8.4$)	-0.3
Ph-H	7.01 (t, $J = 7.4$)		C_{p}	123.29 (dt, $J_d = 159$, $J_t = 7.5$)	-4.55
$CH(CF_3)_2$	6.46 (hep, $J = 6.5$) ^b	-0.29	$C_{\rm m}$	120.03 (d, J = 151)	-5.51
	-		CF_3	122.56 (q, J = 282)	0.65
			CN	121.66	7.74
			$CH(CF_3)_2$	65.07 (d of hep, $J_d = 149$, $J_{hep} = 33$) ^b	-1.69
			C_{eta}	60.40	2.26

 $[^]a\Delta\delta^1H=\delta(\text{enol/Et}_3N)-\delta(Z\text{-enol})$ for the same hydrogen; $\Delta\delta^{13}C=\delta(\text{enol/Et}_3N)-\delta(Z\text{-enol})$ for the same carbon. b hep = heptet.

In THF. In THF, signals for three species (*Z*-enol, E-enol and amide) are observed at both 298 and 240 K. For compounds **6**/**7** at 298 K, the lowest field signal in the ¹H NMR spectrum (OH of **Z-7**) is very broad at δ 13.89–14.00 (<1H) for **7a** and **7b** and not observed for **7c** and **7d**. However, at 240 K, it somewhat sharpens, appearing at δ ca. 14.4 for **7a**–**d**, and it shifts systematically to a lower field on increased electron withdrawal. The 1H NH signals at δ 9.60–9.74 at 298 K shift to 9.91– 10.08 at 240 K (Table 3). The δ (OH, *E***-7**) is at δ 10.73– 10.90 (10.79–10.96) at 298 (240) K with 0.2–0.3 intensity of $\delta(OH, \mathbb{Z}-7)$. For the amides **6a**-**d** a broad CH singlet is observed at δ 5.02–5.05 (298 K) and 5.08–5.12 (240 K) with 0.13-0.17 intensity of the NH of **Z-7**. The amide NH at 298 K overlaps the Z-7 OH signal but is observed at 240 K at δ 9.99–10.24. Three MeO or Me signals for **6a/7a** and **6b/7b** were observed (Table S11). The broad CH₂ quartets at 298 K separate at 240 K to two sharper quartets with, e.g., 1.0:0.2 ratio for 6a/7a. The aromatic signals for the three species overlap. The ¹⁹F NMR at 240 K show three signals (Table S13).

The 13 C NMR spectra (Table 4) also show signals for three species. The lower field CO and C_{α} , the CN, and the upper field C_{β} are well separated. E.g., at 240 K, δ is at ca. 172.6 (COO), 171.5 (C_{α}), 114.6 (CN), 57.7–58.6 (C_{β}) for *Z*-enol, 168.8 (COO), 168.3 (C_{α}), 116.4 (CN), 59.2–60.1 (C_{β}) for the *E*-enol, and 162.2 (COO), 157.9 \pm 0.4 (C_{α}), 114.0 \pm 0.7 (CN), and 46.9–47.4 (d, J= 138 Hz, C_{β} H) for the amide.

Systems **8/9** display, in the 1 H NMR spectrum, two very broad lowest field signals at δ 10.2–13 and 8.8–10.2 at 298 K but five broad signals at δ ca. 13.4, 11.9, 10.6, 10.25, and 10.2 at 240 K. The signals do not overlap at 180 and 200 K, but at 260 K the first three signals merge (Table 3). At 200 K, most of the signals are sharp, except for a few of the two CH(CF₃)₂ heptets. The 19 F NMR spectra at 240 K show one signal.

The 13 C NMR spectra at 298 K indicate that a dynamic process takes place. The COO and C_{α} signals display a broad signal centered at 171 ppm, whereas at 200 or 240 K, sharp signals are consistent with the presence of two enols. C_{α} and C_{β} are at 171.0–171.4 and 57.4–58.4 for **Z-9** and at 169.4 and 58.8–59.6 for **E-9**. $\Delta\delta C_{\alpha,\beta}$ ca. 111–113. (Other signals are in Tables 4 and S12.) Low intensity amide signals appear for **8d/9d**.

When a drop of D_2O was added at 298 K, the broad signals shifted only slightly. However, at 200 K, the C_α , CN, C_{ipso} –MeO, and C_β signals of the two enols split to two signals due to isotope-induced shifts due to isotopomeric O-H, O-D, N-H, and N-D species. In an attempt

to distinguish the new signals from those in the nondeuteriated species, 3 μ L of H₂O or D₂O was added separately to 0.5 mL of THF- d_8 containing **9a.** For nonsplit signals, this resulted in similar δ ¹³C shifts. The assumption that this applies for all the signals led to only one unequivocal assignment: the new signals of C_{α} are at 10 and 12 Hz up field from the signals for the nonlabeled *Z*- and *E*-enols. C_{ipso}—MeO, CN, and C_{β} of *E*-**9a** display splittings of 6, 6, and 3 Hz, respectively, and the CN of **Z-9a** displays a splitting of 10 Hz. Less safe assignments are the splitting of 5 and 22 Hz of the C_m signal of **Z**- and **E-9a**, respectively.

The addition of 3% (v/v) of Et₃N to the **8/9b,c** mixtures simplified the 1 H, 13 C, and 19 F spectra to that of a single compound. E.g., at 240 K (or 298 K) a 0.22M **8b/9b** mixture displayed 1 H signals of NH, Ar–H, C*H*(CF₃)₂, and CH₃ at δ 11.35, 7.41, 7.04, and 6.41, Et₃N signals at 1.05 and 2.69, a broad signal at 10.0, and a small (0.05H) signal at 11.30. For Et₃N alone δ = 0.95 and 2.41. In the 13 C NMR spectrum C $_{\alpha}$ and COO are shifted upfield 2 and 2.4 ppm, the Ar–C signals shift slightly, and the CN, CF₃, and C $_{\beta}$ shift downfield by ca. 6, 0.6, and 2.3 ppm compared with the **Z-9b** signals. Similar spectra were observed from **8c/9c**, and the shifts for **9c** are given in Table 6. The 19 F NMR shows only one signal.

There is no significant concentration dependence of the chemical shifts. At 200 K the δ (13 C) values of the C_{α} , COO, and C_{β} signals and δ (1 H) of the OH and NH signals of **Z**–**7c**, *E*-**7c**, and **6c** were identical within 0.04 ppm, respectively, at 0.07 and 0.56 M concentrations. The three 13 C signals of **6d**, **Z**–**7d**, and *E*-**7d** differed by <0.08 ppm (except for two values differing by 0.13 and 0.15 ppm) at 0.055 and 0.18 M concentrations. This excludes an important intermolecular enol—enol association.

The Z-enol/E-enol equilibrium ratios and the $K_{\rm Enol}$ values were calculated from the integrations of the mostly sharp NH signals of the three species (Table 7). The integrations of the NH and CH of the amide were similar. When possible, the values were also calculated from the ^{19}F NMR data and they resembled, within the experimental error, those based on ^{1}H NMR.

The spectra of the diester 3d/4d (Ar = p-MeOC₆H₄) were measured in THF- d_8 at 298 K for comparison with that of 7a. The signals for 3d are at δ 16.02 (OH) and 11.34 (NH) and for 4d at 9.28 (NH) and 4.83 (CH). The $K_{\rm Enol}$ is 0.4 (298 K) and 0.36 (240 K).

In CD₃CN. The solubility of derivatives 6/7 at 240 K is low, and the spectra were measured only at 298 K, whereas for 8/9 they were recorded at both temperatures. For 6/7 at 298 K, a broad OH signal and a slightly broad

TABLE 7. Z-Enol, E-Enol, and Amide Composition and K_{Enol} in THF- d_8 at Several Temperatures

	_%		_%	%		Z-enol	NMR
<i>T</i> , K	Z-enol		<i>E</i> -enol	amide	$K_{\rm Enol}^a$	/E-enol	method
180	75 (74)		21 (22)	4 (4)	24 (24)	3.6 (3.4)	¹ H (¹⁹ F
	. ,			. ,	. ,	` '	¹ H (¹⁹ F
							¹ H (¹⁹ F
							¹ H (¹⁹ F
	82	010	11			7.5	¹⁹ F
							¹⁹ F ¹⁹ F
	70 (71)	88°	20 (20)			2 5 (2 6)	
						, ,	¹ H (¹⁹ F ¹ H (¹⁹ F
	. ,			. ,			¹ H (¹⁹ F
	. ,		. ,	. ,		` '	¹ H (¹⁹ F
			. ,	. ,	` '		¹ H (¹⁹ F
	(/			. ,	. ,	` '	¹ H (¹⁹ F
				. ,	. ,	` '	19F
		84 ^c					$^{19}\mathrm{F}$
200	64 (59)		23 (28)			2.8 (2.1)	¹ H (¹⁹ F
220	65 (63)		21 (22)	14(15)	6 (6)	3.1 (2.9)	¹ H (¹⁹ F
240	66 (65)		20 (20)	14(15)	6 (6)	3.3 (3.2)	¹ H (¹⁹ F
260	63 (65)		22 (18)	15(17)	6(5)	2.9 (3.6)	¹ H (¹⁹ F
280	64 (65)		18 (17)	18(18)	5(5)	3.6 (3.8)	¹ H (¹⁹ F
300		80^c		20	5		$^{19}\mathrm{F}$
320		68^c		32			$^{19}\mathrm{F}$
		62^c		38			^{19}F
							¹H
							¹ H
							¹ H
							¹ H
							¹H ¹H
	03	1000	37			1.7	-п ¹Н
	27 8	100-	61.9	0.4		0.61	¹H
							¹H
							1H
							¹H
							¹H
							1H
300		100c		-			^{1}H
240	50		48	2	49	1.04	^{1}H
298		100c					^{1}H
180	27		72	1	99	0.38	^{1}H
200	34		64.6	1.4	70	0.52	^{1}H
220	40		58	2	49	0.69	^{1}H
240	44.8		51.6		27	0.87	¹ H
	50.5		44.4	5.1	19	1.13	¹ H
	57.5		35.6			1.61	¹ H
							¹ H
	07	85^c	_			100	¹ H
							¹ H
							¹ H
							¹H ¹H
							1H 1H
							1H 1H
							1H
200	04		J	55	~	ω1.J	11
	200 240 280 320 240 298 200 220 240 260 280 300 220 240 260 280 300 320 240 240 260 280 300 320 240 240 260 280 300 240 240 240 240 240 240 240 240 240 2	T, K Z-enol 180 75 (74) 200 72 (72) 240 77 (76) 280 82 300 320 240 70 (87) 200 68 (66) 220 69 (68) 280 69 (68) 280 65 (63) 280 64 (65) 300 320 240 66 (65) 280 63 (65) 280 64 (65) 300 320 320 44 220 50 240 56 280 63 3300 38 200 44 220 50 240 56 280 63 3300 300 180 37.8 200 44.6 220 54.6 280 54.6 280 54.6 280 5	T, K Z-enol 180 75 (74) 200 72 (72) 240 77 (74) 280 82 300 91° 320 88° 240 70 (71) 298 70 (87°) 200 68 (68) 240 68 (68) 240 68 (68) 240 68 (69) 280 69 300 44 220 65 (63) 240 66 (65) 260 63 (65) 280 64 (65) 300 46 (65) 300 46 (65) 300 44 (65) 330 46 (62) 300 44 220 50 240 56 280 63 300 100° 280 62 300 100° 240 53.5 260 54.6 28	T, K Z-enol E-enol 180 75 (74) 21 (22) 200 72 (72) 24 (24) 240 77 (74) 18 (20) 280 82 11 300 88c 12 240 70 (71) 20 (20) 298 70 (87) 16 200 68 (68) 19 (21) 240 68 (68) 19 (21) 240 68 (68) 19 (21) 240 68 (68) 19 (21) 240 68 (68) 19 (20) 240 68 (68) 19 (21) 240 68 (68) 19 (20) 240 68 (68) 19 (20) 260 68 (69) 18 (18) 280 69 17 300 4 (59) 23 (28) 220 66 (65) 20 (20) 260 63 (65) 22 (18) 280 64 (65) 20 (20) 260 63 (65) 22 (18)	T, K Z-enol E-enol amide 180 75 (74) 21 (22) 4 (4) 200 72 (72) 24 (24) 4 (4) 240 77 (76) 17 (18) 6 (6) 280 82 11 7 300 91 c 9 9 320 88 c 12 20 240 70 (71) 20 (20) 10(9) 298 70 (87) 16 12(13) 200 68 (66) 21 (23) 11(11) 220 69 (68) 19 (21) 12(11) 240 68 (68) 19 (20) 13(12) 240 68 (68) 19 (20) 13(12) 240 68 (68) 19 (20) 13(12) 240 68 (69) 18 (18) 14(13) 280 69 (8) 21 (22) 14(15) 240 66 (65) 20 (20) 14(15) 240 66 (65) 20 (20) 14(15) 280 64	T, K Z -enol E -enol amide K_{Enol}^a 180 75 (74) 21 (22) 4 (4) 24 (24) 240 77 (74) 18 (20) 5 (6) 19 (16) 260 77 (76) 17 (18) 6 (6) 16 (16) 280 82 11 7 13 300 91° 9 10 320 88° 12 7 240 70 (71) 20 (20) 10(9) 9(10) 298 70 (87°) 16 12(13) 7 (7) 200 68 (68) 19 (21) 12(11) 7 (8) 240 68 (68) 19 (20) 13(12) 7 (7) 280 69 17 14 6 200 68 (68) 19 (20) 13(12) 7 (7) 240 66 (65) 20 (20) 14(15) 6 (6) 220 65 (63) 21 (22) 14(15) 6 (6) 280 64 (65)	T, K Z-enol E-enol amide K_{Enol}^a /E-enol 180 75 (74) 21 (22) 4 (4) 24 (24) 3.6 (3.4) 200 72 (72) 24 (24) 4 (4) 24 (24) 3.0 (3.0) 240 77 (74) 18 (20) 5 (6) 19 (16) 4.5 (4.2) 280 82 11 7 13 7.5 300 91° 20 (20) 10(9) 9 (10) 3.5 (3.6) 220 68 (66) 21 (23) 11(11) 8 (8) 3.2 (2.9) 220 69 (68) 19 (20) 13(12) 7(7) 3.6 (3.4) 220 69 (68) 19 (20) 13(12) 7(7) 3.6 (3.4) 220 69 (68) 19 (20) 13(12) 7(7) 3.6 (3.4) 220 69 (68) 19 (20) 13(12) 7(7) 3.6 (3.4) 280 68 (69) 18 (18) 14(13) 6(7) 3.8 (3.8) 280 65 (63) 23 (28) 13(13)

 a $K_{\rm Enol}$ = ([E-enol] + [Z-enol])/Amide. b Integration of the signals for the three species. $^1{\rm H}:$ integration of the NH signals in the $^1{\rm H}$ NMR spectrum. $^1{\rm PF}:$ integration of the F signals in the $^1{\rm PF}$ NMR spectrum. c The signals of the two enols merge to one signal. d Assuming that 1% of the amide NH could have been observed. e Broad signal.

NH signal at δ 14.0–14.3 and δ 8.4–8.5 (Table 3) were ascribed to the enol. A slightly broad signal at δ 8.7–8.9 and a quartet at δ 4.92–4.97 with 1:1 ratio are due to the NH and CH of the amide. However, the presence of three species is evident by the overlapping aromatic signals and the three MeO signals of **6a/7a** at δ 3.80, 3.78, and 3.75 with an approximate 3.0:1.1:0.26 ratio. The $^{19}{\rm F}$ NMR spectra (Table 5) display two signals. The $^{13}{\rm C}$ NMR spectra (Table 4) display discrete signals for two species. E.g., for the enol at δ ca. 171.45 (COO), 171.13

TABLE 8. Enols/Amide Compositions in CD₃CN

comp	<i>T</i> , K	%~Z-enol	%~E-enol	$\% \ amide$	$K_{\rm Enol}^a$	Z-enol/ E -enol
6a/7a	298	70		30	2.33	
6b/7b	298	64		36	1.78	
6c/7c	298	59		41	1.44	
6d/7d	298	51		49	1.04	
8a/9a ^a	298	80	10	10	9.00	8
8b/9b	298	77	8	15	5.67	9.6
8c/9c	298	72	12	16	5.25	6
8d/9d	298	66	12	22	3.54	5.5
8a/9a	240	85	13	2	49	6.5
8b/9b	240	85	11	4	24	7.7
8c/9c	240	85.5	9.5	5	19	9.0
8d/9d	240	78	12	10	9	6.5

FIGURE 2. log K_{Enol} vs σ for p-XC₆H₄NHC(OH)=C(CN)CO₂R in CD₃CN: (A) R = CH(CF₃)₂ at 240 K; (B) R = CH(CF₃)₂ at 298 K; (C) R = CH₂CF₃ at 298 K.

 (C_{α}) , and 57.2 (C_{β}) and corresponding ones for the amide at 161.3, 157.2, and 46.58–47.37 (Table 4).

The **7/6** ratios were calculated from the intensities of the NH signals and increased from 2.2 for p-MeO (**6a/7a**) to 1.04 for p-Br (**6d/7d**)(Table 8). A log $K_{\rm Enol}$ vs Hammett's σ values is linear with $\rho = -0.64$ ($R^2 = 0.9893$, Figure 2). A plot vs σ^+ is curved.

Systems **8/9** display signals for **Z-9**, **E-9**, and **8** at 298 and 240 K: at δ ca. 13.2 (br OH), 8.7 (NH) in 1:1 ratio for **Z-9**, at 10.25 (NH) for **E-9**, and at ca. 8.9 (NH), 5.1 (CH) [1:1] for **8**. At 240 K, the ¹H signals are sharper. On shaking with D₂O and immediate monitoring, δ (OH) disappeared, and the NH and CH signals had lower intensities. The three signals in the ¹⁹F NMR spectra are in ratios similar to those of the NH signals. The rt ¹³C NMR spectra showed signals for only one enol, but at 240 K, signals for the three species were observed with C_{α} at ca. 170.3 and C_{β} at 56.5–57.9 ppm, i.e., $\Delta \delta_{\alpha,\beta}$ ca. 113 ppm. Addition of CF₃COOH led to sharper signals.

 $K_{\rm Enol}=([{\it Z}{ extbf{-}9}]+[{\it E}{ extbf{-}9}])/[{\it 8}]$ is higher for more electron donating aryls. It decreases at 298 K from 9.0 for ${\it 8a/9a}$ to 3.5 for ${\it 8d/9d}$, and at 240 K from 49 to 9.0. Although the error in $K_{\rm Enol}$ is larger than that for ${\it 6/7}$, Hammett's log $K_{\rm Enol}$ vs σ plots are reasonably linear with $\rho=-0.70$ ($R^2=0.9316$) at 298 K and -1.23 ($R^2=0.968$) at 240 K (Figure 2). The Z-Enol/E-Enol ratios are not much substituent dependent (Table 8).

In DMF- d_7 . All compounds show similar spectral characteristics in DMF- d_7 . In the 1 H NMR spectrum at

298 K, there is a broad $\leq 1H$ signal at δ 12.9–16.1, a slightly broad 1H signal at 10.22–10.75, and CH₂ or CH signals at ca. δ 4.85 and 6.4, respectively. At 240 K, the p-Me and p-MeO signals (Table S11) are singlets, frequently accompanied by $\leq 5\%$ overlapping signals. Small (4–11%) signals are sometimes observed around δ 11.3–11.6 (NH) and 5.7 (CH) or overlap the main aromatic signals. At 240 K, the lower field signal (now a broadened ca. 1H) is further shifted to δ 14.9–17.2. Other signals become sharper. The ¹⁹F NMR spectrum at 298 or 220 K displays a major ¹⁹F signal accompanied by another low intensity signal.

The 13 C NMR spectra at 220 K show two broad carbonyl signals at δ 168.0–169.2 for **6**/**7** and at 166.4–167.3 for **8**/**9**, 4 Ar, CN (ca. 125.6) and CF₃ (ca. 125.2) signals, a higher field CH_2CF_3 (58.6–58.9) or $CH(CF_3)_2$, and a singlet at ca. 60 ppm uncoupled to an hydrogen (C_β). Additional signals are consistent with small percent of the amide.

For **8/9** at 298 K, nonsharp signals for only one species were observed. At 220 K, they are at 167.2 \pm 0.1 (C_o), 166.7 \pm 0.1 (COO), 122.5 \pm 0.1 (CF₃), 121.8 \pm 0.2 (CN), 65.1 (CH(CF₃)₂), and 60.3 \pm 0.3 (C_{\beta}). Few additional small signals are observed.

Significantly, on addition of three drops of aqueous 3 N NaOH solution or of Et₃N to **7a**, **9a**, **9b**, or **9d**, the 13 C and the 19 F spectra display only small shifts of the signals. In the 1 H NMR spectrum, the signal at low field and at δ 5.7 for **7a** disappears. However, whereas the δ (OH) signal of the enols is only slightly temperature dependent, the broad low field signal in DMF shifts significantly, e.g., for **9b**, from 16.12 (rt) to 17.45 at 220 K, or from δ 13.98 (rt) to 15.55 (220 K) for **9c**. The corresponding δ (NH) values change by <0.07 ppm.

We ascribe the signal at δ ca. 13-17 to the solvated proton and the other signals to the conjugate base of the species, both formed by ionization. The δ of this proton should be concentration dependent if exchange with the neutral species takes place. If the anion is the main species in neutral solution, the added base ensures a complete ionization and reduces the rate of the exchange process. On the basis of the NH signals and assuming that the small NH signal is due to the amide, compounds ${\bf 8a-d}$ and ${\bf 9a-d}$ at 220 and 298 K and ${\bf 6a-d}$ and ${\bf 7a-d}$ at 298 K exist completely as the ion, whereas at 220 K, there are 6%, 10%, and 4% amide for ${\bf 6a}$, ${\bf 6b}$, and ${\bf 6c}$, respectively.

Deuteriation Experiments. When the sample was shaken with D_2O and immediately monitored, the low field signal disappears completely and the signal at δ ca. 10. 5 is reduced to <10–0%. The extent of deuterium-induced shifts caused by N–D vs N–H on C_α could not be evaluated for system 7, since both the N–H and the residual O–H hydrogens are exchanged. No *N*-alkyl derivative of 7 is available, but we studied the changes in the ^{13}C NMR spectra of the enol ether 11^7 after

p-MeC₆H₄NHC(OMe)=C(CN)CO₂Me 11

deuteriation. On addition of 1:1 H_2O/D_2O at 220 K to 11 in DMF- d_7 , the N-H signal was 45% deuteriated, and

(7) Lei, Y. X.; Rappoport, Z. J. Org. Chem. 2002, 67, 6971.

 ^{13}C signals at δ 169.35, 138.86, 130.77, 118.56, 62.60, 62.27, 52.56, and 21.05 were shifted without splitting to 169.07, 138.70, 130.58, 118.41, 62.39, 61.90, 52.41, and 20.82. The signals at δ 171.70 (C $_{\alpha}$), 134.49 (C $_{\rm ipso}$ –N), and 125.25 (C $_{\rm o}$) split, and the new deuterium-induced signals were 0.11, 0.12, and 0.10 ppm (0.08, 0.10, and 0.08 ppm at 298 K) upfield. The $\emph{C}\textsc{OOMe}$ carbon also shows 0.07 ppm splitting at 298 K.

When a sample of **7a** was exchanged with 1:1 H_2O/D_2O in DMF- d_7 , the N-H group was 66% exchanged and the OH signal disappeared. At 220 K C_{α} , C_{ipso} -OMe and C_o to N of **7a** split by 0.12, 0.06, and 0.20 ppm, respectively. In the 60% deuteriated amide, the COO and CN split by 0.11 and 0.13 ppm, respectively.

In DMSO- d_6 . The compounds are probably also ionized in DMSO- d_6 . In the 1H NMR spectra of $\mathbf{6/7}$, there is no OH signal at a δ value larger than δ 10.4, and only a broad NH signal is at 10.3–10.4. A broadened aromatic multiplet, a CH₂ quartet, and a broad signal at 6.5–7.8 were observed. The 13 C NMR spectra display signals at δ 167.0–167.7, 165.4–166.4, and 159.40 (for $\mathbf{6a/7a}$) and 139.4 (for $\mathbf{6/7}$ $\mathbf{c,d}$), and a CH₂ signal at δ 58.0–58.3. A singlet at δ 57.5–59.2 (probably C_{β}) overlaps the CH₂ signal (Tables 4 and S12). The 19 F spectrum displays a signal at -73.3. Addition of NaOH to $\mathbf{7c}$ did not affect the 13 C and 19 F spectra, and two added drops of CF₃-COOH did not affect the 1 H, 13 C, and 19 F spectra.

For the **8/9** series, there are two broad ^1H signals at δ 11.7–12.6 and 9.9–10.1 and aromatic, $\text{CH}(\text{CF}_3)_2$, and p-Me and p-Me osignals. On addition of a few drops of 3 N NaOH to **9b**–**9d**, the first, but not the second, signal disappeared, and addition of TFA to **8a/9a** shifted the lower field signal to δ 13.78. Other signals of 5–6% intensity appear in the aromatic region or in the p-Me region of **8b/9b**. In the ^{19}F NMR spectra, a single signal is at δ –73.4. Addition of NaOH or TFA results in signals sharpening and only minor shifts in the ^{13}C NMR spectra to signals at δ ca. 165.9, 165.7, 137.3–139.9 (154.5 for **8a/9a**), aromatic and CH(CF₃)₂ signals, and a singlet at 59.1–59.7, $\Delta C_{\alpha,\beta} > 105$ ppm.

Chemical Shifts of HCl in DMF- d_7 and DMSO- d_6 . When a small amount of gaseous HCl was bubbled into pure DMF- d_7 at rt, a broad signal appeared at δ 8.88, and the DMF signals δ 2.74, 2.91, and 8.01 at rt shifted upfield by 0.05 ppm. With higher HCl concentration (7% of the DMF concentration) the signal became a sharp signal at δ 14.12, and the DMF signals shifts were negligible. At 220 K the signal became broad at ca. δ 15.25. When the rt spectrum was measured after 72 h, the lower field signal shifted to δ 13.79, other signals were not affected, and a new broad signal at δ 9.74 (intensity 3% of δ 13.79 signal), which may be due to decomposition to HCOOH, is obtained. We conclude that δ ("H+") in DMF \geq 8.88, depending on the temperature and concentration.

In DMSO- d_6 containing traces of water, small amount of bubbled HCl did not cause any change, but when the [HCl] was ca. 20% of that of [DMSO- d_6], the water signal disappeared, a sharp signal appeared at δ 13.30, and the DMSO signal was not affected.

Z-Enol/E-Enol Chemical Shifts and Ratios. Only one enol is observed for **7a**–**d** in CDCl₃, but two enols were observed for **9a**–**d** at 240 K. In THF-*d*₈ and in CD₃-CN, two enols were observed in the ¹H NMR for all the systems but the OH signal of **E-7a**–**7d** was not observed

Stable Enols of Amides

TABLE 9. DNMR Data Related to Rotation around the C=C Bond in THF- d_8

comp	$K_{i,c}{}^a$	T _c , K	$k_{\rm c}$, $b { m s}^{-1}$	$\Delta G_{\rm c}^{ \ddagger, c}$ kcal/mol
7a	7	302	56	15.3, 16.5
7 d	5	$> 330^{d}$	> 54	> 16.9, >17.9
9b	8.2	270.8	54.2	13.7, 14.8
9d	1.5	284.6	65.1	14.5, 14.8
3a				18.7^{e}
12a				9.4^f
12b				10.0^{f}

 a $K_{i,c}$ is the equilibrium ratio of the two enols at the coalescence temperature, calculated from a log $K_{\rm i}$ vs 1/T plot. b At the coalescence temperature $T_{\rm c}$. c The two $\Delta G_{\rm c}^{\pm}$ values are for the processes starting from the Z-isomer and the E-isomer, respectively. Estimated errors are ± 0.3 kcal/mol. ^d Coalescence starts but is incomplete at 330 K, close to the bp of THF. $^{\it e}$ In $C_6D_6,$ from ref 3. ^f From ref 7.

in both solvents and for **E-9a** in CD₃CN at 240-298 K. The OH signal is observed in THF- d_8 for **9a**–**9d** at 200– 240 K and for 7a-7d at 220 K. The following features are discernible from Table 3: (i) always $\delta(OH, 7a-7d)$ $> \delta(OH, 9a-9d)$, (ii) always $\delta(NH, 9a-9d) > \delta(NH, 7a-9d)$ **7d**), (iii) the δ (NH) values are solvent dependent, and for both series their order is $CDCl_3 < CD_3CN < THF-d_8$, (iv) when both enols were observed, the $\Delta\delta$ (OH) = δ - $(OH, Z-enol) - \delta(OH, E-enol)$ is higher for system 7 than for system **9**, (v) the $\Delta\delta(NH) = \delta(NH, Z\text{-enol}) - \delta(NH, Z\text{-enol})$ *E*-enol) is higher for **7** than for **9** in THF- d_8 , (vi) for **9**, the order of $\Delta \delta$ (NH) is CDCl₃ > CD₃CN > THF- d_8 .

DNMR Study. The presence of two enols at low temperature and of one enol with a broad OH signal in a few cases at rt suggest that a coalescence process takes place around or below rt. The behavior of the CH signal was studied for **9b** and **9d** by DNMR. The coalescence temperatures T_c in THF- d_8 were 270.8 and 284.6 K, respectively. By using the populations of the two isomers at T_c , the ΔG_c^{\dagger} s values were found to be 13.7 and 14.5 kcal/mol, respectively, starting from the Z-enols, and 14.8 kcal/mol starting from both E-enols. These values are between the values for the O,N-dimethyl systems 12a

ArN(Me)C(OMe)=C(CO₂CH₂CF₃)

12 (a) Ar =
$$p$$
-MeOC₆H₄
(b) Ar = p -MeC₆H₄

O

ArNHC C(CN)CO-1

13 a-d: $R = CH_2CF_3$ (a-d are as in systems 6/7) 14 a-d: $R = CH(CF_3)_2$

and 12b and that for 3a (Table 9).

The DNMR study of compounds 7 is complicated by the presence of both enols and amides, but a coalescence study of the CH₂ quartet was possible. Compound 7a showed coalescence at 302 K and ΔG_c^{\dagger} of 15.3 and 16.5 kcal/mol starting with the Z- and E-enol, respectively. A sample of 7d in THF- d_8 showed broadening, but no coalescence up to 330 K, giving a minimum ΔG_c^{\dagger} value of 16.9 kcal/mol starting from **Z-7d**.

Temperature Dependence of the Enol/Amide and the Z-Enol/E-Enol Equilibria. In the range 180-298 K the ¹H, ¹⁹F, and ¹³C NMR spectra display separate signals with no coalescence for the amide and the enol-(s) for all systems in all solvents. However, the percentage

TABLE 10. Thermodynamic Parameters for the Enol ⇒ Amide and Z-enol $\rightleftharpoons \vec{E}$ -enol Equilibria in THF- d_8 at 298 K

system	$K_{\rm Enol}$ or $K_{\rm i}$	ΔG° kcal/mol	ΔH° , kcal/mol	ΔS°, eu
6a == 7a	10 ^a	-1.4	-1.2	0.8
$6c \rightleftharpoons 7c$	5.4^{a}	-1.0	-0.5	1.7
6d ⇒ 7d	4.3^{a}	-0.9	-0.5	1.1
8d ≈ 9d	9.0^{a}	-1.3	-2.3	-3.3
Z -7a $\rightleftharpoons E$ -7a	6.7^{b}	-1.1	-1.1	0.1
Z -7c $\rightleftharpoons E$ -7c	6.0^b	-1.1	-0.3	2.6
Z -7d $\rightleftharpoons E$ -7d	4.5^{b}	-0.9	-0.5	0.2
Z -9a $\rightleftharpoons E$ -9a	1.7^{b}	-0.4	-1.0	-2.2
Z -9 b ≈ <i>E</i> -9 b	1.6^{b}	-0.3	-0.9	-2.1
Z -9d $\rightleftharpoons E$ -9d	1.5^{b}	-0.2	-1.4	-3.9
a $K_{\rm Enol}$. $^{b}K_{\rm i}$.				

of the amide in THF-d₈ increased upon an increase in the temperature (Table 7). $\log K_{\rm Enol}$ vs 1/T plots were linear and gave the ΔH° values. The ΔG° and ΔS° were calculated from them and the $K_{\rm Enol}$ value at 298 K. The data are in Table 10.

The Z-enol/E-enol ratios in THF- d_8 were determined at 180-280 K. The percent of E-enol increased upon a decrease in temperature. Plots of log([Z-enol]/[E-enol]) vs 1/T were linear ($R^2 > 0.99$), giving the thermodynamic parameters in Table 10.

Discussion

Cyano vs Ester Effects. Although information on stable enols of amides is slowly accumulating, the only systematic data on the structures and K_{Enol} values as a function of the structure and the solvent are for the diester activated systems 3.3 In enol/amide systems 3/4 one ester group (CO₂CH₂CF₃ or CO₂CH(CF₃)₂) is identical with that in the presently studied systems 6/7 and 8/9, and we can evaluate the effect of replacing one such ester group by a cyano group. A more limited comparison is that of 7a and 9a with the CN, CO₂Me activated system

Cyano is a better inductively EW group than CO₂Et ($\sigma_{\rm I}$, CN, 0.55; CO₂Et, 0.30),⁸ but resonatively the two groups are similar (σ_R , CN, 0.13; CO₂R, 0.14; σ_R^- , CN, 0.33; CO₂R, 0.34).8 Cyano has a lower steric bulk than an ester, and due to its linearity, it better accommodates into a planar resonative system. Consequently, cyano is a better acidifying group than a CO2Me or even a CO2-CH₂CF₃ group, of polysubstituted carbon acids (pK_a- $(DMSO)/CH_2(CN)X/14.2$ (X = CO_2Et), 11.2 (X = CN), and $pK_a = 16.4$ for $CH_2(CO_2Me)_2$. Relevant data to our systems are the ICR determined $\Delta H_{\text{ionization}}(\text{CH}_2\text{YY}')$ [gas phase, kcal/mol] values. PhNHCOCHYY': YY = (CO₂-Me)₂, 324.1; CO₂CH₂CF₃(CO₂Me), 317.9; (CO₂CH₂CF₃)₂, 311.4; CO₂Me(CN), 309; CN(CO₂CH₂CF₃), 304.0; CO₂CH₂-(CF₃)₂(CN), 302.7.¹⁰ These differences should also be

⁽⁸⁾ Lowry, T. H.; Richardson, K. S. In Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; pp

⁽⁹⁾ Bordwell, F. G. *Acc. Chem. Res.* **1988**, *21*, 456. (10) (a) Mishima, M.; Lei, Y. X.; Rappoport, Z. 16th IUPAC Conference on Physical Organic Chemistry (ICPOC 16), University of California, San Diego, La Jolla, California, 4-9 August, 2002, Book of Abstracts, Abst. LC21 and unpublished results. (b) Solvent effects should affect the values in solution. However, we note that SCRF calculations indicate only a small solvent effect of CCl₄ or EtOH on the gas-phase $K_{\rm Enol}$ values. ^{4a} Moreover, the hydrogen bonds which affect strongly the K_{Enol} values are not treated in these calculations.

reflected in the stabilization of the zwitterionic hybrid 1a of the enol. In addition, the dipole moments of CN and COOR and the interaction of their dipoles with the CO of 2 and the C-O of 1 differ. Moreover, the ester carbonyl is a better hydrogen bond acceptor from the OH and NHR groups than a CN group.

Several of these properties operate in opposite directions on the relative stabilization of 1 and 2, and predictions of whether the $K_{\rm Enol}$ values for systems **6/7** and 8/9 are higher than, identical to, or lower than those for systems 3/4 are difficult to make.

A previous experiment with the CN, CO₂Me activated system 5/10, showed it to be the enol 10 in the solid state with intramolecular COOR···HO and intermolecular NH∙ ··CN hydrogen bonds. Since the (CO₂Me)₂ analogue **3a**/ 4a (Ar = Ph) and the diesters 3b/4b (various Ar) have the amide structures **4a** and **4b** in the solid state, ^{2,3} a cyano is a better enol stabilizer than CO₂Me or CO₂CH₂-CF₃ in the solid. This is also true in solution. In CDCl₃ at rt, the 3a/4a, $^2 3b/4b$, 3c/4c, and $3d/4d^3$ mixtures are 5%, 26%, 78–83%, and 81–88% enolic,³ respectively, whereas at 220 K, 10 is the only species, and at 298 K all systems 6/7 and 8/9 are exclusively enolic. In THF- d_8 $K_{\rm Enol} = 0.4$ for **3a/4a** and 10 for **7a**, i.e.; $K_{\rm Enol}$ increases 25-fold by replacing a CO₂CH₂CF₃ group by a CN. In CD₃-CN $K_{\text{Enol}} = 1.0 - 2.3$ for **7a-d** and 3.5-9.0 for **9a-d** at 298 K, K_{Enol} (9)/ K_{Enol} (7) = 3.2-3.9. For 3d/4d K_{Enol} = 0.03-0.08. For **3e/4e** the $K_{\text{Enol}} = 0.23$ (Ar = Ph) and 0.33 $(Ar = p-MeC_6H_4)$ while $K_{Enol} = 5.7$ (**9b**) and 5.3 (**9c**). Consequently, the CN increases K_{Enol} by 17–140-fold, compared with CO₂CH₂CF₃ and by only 6-fold compared with CO₂CH(CF₃)₂, and appreciable percentages of the CN-substituted enols are observed in THF- d_8 and CD₃-CN, whereas the di-CO₂R-enols are a very minor component in CD₃CN.³

Ionization of the Enols/Amides in DMSO- d_6 and **DMF-***d*₇. Only the amide was previously observed in DMSO- d_6 for all systems, including 3/4. The higher stability of enols 7, 9 and the higher acidity of 6/7, 8/9 can open two new possibilities. The enols may be observable in DMSO- d_6 , or ionization of the **6**/**7**, **8**/**9** systems will give the resonative enolate ions in the polar solvent. Since DMF- d_7 resembles DMSO- d_6 in its polarity, solvent properties, and behavior but could be cooled to a low temperature, in contrast with DMSO- d_6 , most of the experiments were conducted in DMF- d_7 . The conclusions are similar for both solvents.

¹H, ¹⁹F, and ¹³C NMR spectra in both solvents show the presence of one major species together with at most a few percent of another species. The major species is neither an enol, since its low field signal is not in the relatively narrow region of δ (enolic OH) and it is a much broader signal, nor an amide, since it lacks a $C_{\beta}H$ signal at the CH region of amides 4 and 5. The minor product has such a $C_{\beta}H$ signal and is probably the amide.

A change to highly polar solvents is expected to enhance the ionization of the amide/enol species, which is substituted by three strongly EW substituents. In the similar situation of the diesters 3/4, the derived anions carry three bulky substituents and planarity, and hence, maximum stabilization by resonative negative charge delocalization on Y, Y' is not achieved. In the cyanosubstituted anions 13 and 14 derived from 6/7 or 8/9, planarity is more easily achieved due to the linear CN group, delocalization is more efficient, and, hence, the ionization should be more extensive than in the non-CN activated systems. Indeed, the gas phase $\Delta H_{ionization}$ values quoted above for 7a and 8a/9a are ~20 and 21 kcal/mol more favored than those for 3a/4a and ~ 7 and 8 kcal/mol more favored than those for 3d/4d.¹⁰ Hence, ionization of 6/7, 8/9 is the dominant process in the polar solvents.

There are precedents. The acidic polymethoxycarbonylcyclopentadienes¹¹ and compounds (NC)₂CHCO₂R¹² ionize in DMSO-d₆, although they have the enol of ester structure in less polar solvents such as CDCl₃.

That addition of NaOH to the solution in DMF- d_7 and DMSO- d_6 does not affect the spectra, except for the disappearance of the very broad lower field proton (see below) and the minor species (which we ascribe to 6 or 8, which ionizes by the added base) corroborates that the observed spectra are for the already ionized species, i.e., anions 13a-d and 14a-d. Likewise, in the less polar THF where the enols and the amide are observed, the addition of base give species that we ascribe to the anions **14b**,c (Table 6). The observed spectra raise two questions: (i) Is the broad low field signal due to the solvated proton (H^+S , S = DMF, DMSO)? (ii) Are the chemical shifts of the observed species consistent with expectation for ions **13** and **14**?

The spectra of HCl in DMSO- d_6 and DMF- d_7 answer question (i) in the affirmative. The broad signal observed at low HCl concentration resembles, in its broad shape and its δ value, the signal of our systems observed in DMF- d_7 in several cases. The formation of a sharper signal at rt and a broader one at low temperature at higher HCl concentration indicate that association and hydrogen bonds strongly effect the position and shape of the H+·S signal. A rapid exchange of H+·S with the solvent S probably makes the δ value concentration dependent.

A simplified expectation is that ¹H, ¹³C, and ¹⁹F signals of **13** and **14** will shift upfield compared with the neutral precursors as is known for carbanions derived from carbon acids. 13a However, for systems carrying the strongly EW CN and CO₂R substituents, we cannot predict the direction of the shift as shown by the following examples: For $CH_2(CO_2Me)_2 \delta 41.2$ (CH₂), 167.6 (CO₂Me), 52.3 (Me), ^{13b} and in its carbanion Na⁺C⁻H(CO₂Me)₂ δ - $(HMPT) = 61.3, 171.9, and 47.8, ^{13c} i.e., both the formal$ carbanionic carbon and the CO2 carbon are shifted to a low field. In contrast, for $CH_2(CN)_2$, δ 8.6 (CH_2) and 110.5 $(CN)^{13d}$ are shifted to -2.1 and 130.3, i.e., upfield for the C⁻ and low field for the CN in Na⁺CH(CN)₂ in HMPT.^{13c}

In our systems, the ground-state polarization is very high, judging by the $\Delta \delta_{\alpha,\beta}$ of >100 ppm. The δ (COOR) values of 170.2-172.7 for enols $\mathbf{Z-7a-d}$ and $\mathbf{Z-9a-d}$ in CD₃CN, CDCl₃, and THF-d₈ are in the region of the $C^{-}H(CO_{2}Me)_{2}$ anion. Ionization of such systems should not change drastically the charge on C_{α} , C_{β} , and their substituents. The $\delta(COOR)$ of 165.6–169.13 in 13 and

⁽¹¹⁾ Lei, Y. X.; Cerioni, G.; Rappoport, Z. J. Org. Chem. 2000, 65, 4028.

⁽¹²⁾ Neidlein, R.; Kikelj, D.; Kramer, K.; Sui, Z.; Boese, R.; Blaser,

D.; Kocjan, D. Chem. Ber. 1989, 122, 1341.
 (13) Kalinowki, H.-O.; Berger, S.; Brown, S. In Carbon-13 NMR Spectroscopy; Wiley: Chichester, U.K., 1984; (a) p 415, (b) p 206, (c) p 418, (d) p 249.

JOC Article

14 are not unreasonable, and the shifts of C_β from δ 57.4–58.9 in THF- d_8 mostly to 59.1–60.7 are in the direction found in the malonic ester system. Moreover, these shifts resemble those observed on ionization in THF where the anions 14c (Table 6) and 14b are presumably formed. We conclude that the small changes observed in δ ¹³C values are as expected due to the high polarization in the enols and that the direction of the shifts is not inconsistent with an ionization process.

Hydrogen Bonding in the Enols. The importance of hydrogen bonding between the OH, and to a lesser extent the NH group and cis ester groups, was emphasized in our work on systems $3.^3$ It was concluded that the OH···O=COR-cis interaction is the dominant one, it occurs preferentially with the less fluorinated ester group, and contributes to the barrier for internal rotation around the C=C bond in the push-pull enols.^{3,7} The stronger hydrogen bond in the *Z*-isomer leads to a higher δ (OH) value and to its preference in the E/Z enol equilibria.

In enols **7** and **9**, there is only one ester group which enables an OHO intramolecular hydrogen bond in the *Z*-isomer, *Z*-**15**. The CN group is too remote to allow intramolecular OH···NC and NH···NC bonding in solution, although in the solid, the *Z*-isomer forms such an *inter*molecular hydrogen bond. By the concentration-independent shifts, we exclude such strong interaction in solution. However, a weaker NHO hydrogen bond exists in the *E*-isomer, *E*-**15**.

The prediction is that **Z-15** will be the major or the exclusive isomer. However, in **7** and **9**, where the ester group carries three or six fluorines, the hydrogen bonds are weaker in **9** than in **7**, and in **7** and **9** than in **Z-3d**,**e** and **10**. Due to the hydrogen bonds, we expect in non-hydrogen bonding solvents a lower field $\delta(OH)$ for **Z-15**, ¹⁴ a lower field NH for **E-15**, a lower internal rotation barrier than in the diesters **3**, higher **Z-7/E-7** than **Z-9/E-9** ratios, and a modification of these predictions in hydrogen bonding solvents.

The single enol observed for $7\mathbf{a} - \mathbf{d}$ in CDCl₃ and CD₃-CN where data only at 298 K are available is unlikely to be due to the exclusive formation of \mathbf{Z} -7, since in THF- d_8 , the NH signals of both enols are observed at 298 K. Hence, we ascribe it to a rapid \mathbf{Z} -7 \rightleftharpoons \mathbf{E} -7 interconversion at 298 K as measured in other systems. ¹⁵ The OH signal of \mathbf{E} -7 is not observed due to its low intensity and to broadening due to hydrogen bonding to the solvent. As

expected, the OH signals of *E-7* and *E-9* are observed only at low temperature (220 K for **7a**, 200 and 240 K for **9a**–**9d** in THF-*d*₈).

The few $\delta(OH)$ values available for *E***-15** are at a significantly higher field than for *Z***-15**. The $\delta(OH)$ values are also at a higher field than for the diesters **3**, since in both *E***-** and *Z***-3** there are $OH\cdots O=COR$ bonds. Both observations are according to the predictions.

A stronger hydrogen bond to the $CO_2CH_2CF_3$ in 7 than for the $CO_2CH(CF_3)_2$ for **9** is reflected by several phenomena. First, $\delta(OH)$ for **7** is 0.7–1.0 ppm higher than that for **9** in $CDCl_3$, CD_3CN , and in $THF-d_8$ at 240 K. Second, $\delta(OH)$ [**Z-7**–**E-7**] > $\delta(OH)$ [**Z-9**–**E-9**]. Third, δ -(NH) (**7**) < $\delta(OH)$ (**9**) but the differences (0.2 in CD_3CN , 0.4 in $CDCl_3$, 0.3–0.6 in $THF-d_8$) are not large. Fourth, the Z-enol/E-enol ratios are relatively high in CD_3CN for all systems and for **7a**–**7d** in $THF-d_8$, where the Z-isomers comprise 90% and TO-81% of the enols mixture systems.

The significant temperature dependence of the $E extstyle{-}9/Z extstyle{-}9$ in THF- d_8 leads to 62% $Z extstyle{-}9$ in the enol mixture at 280 K but to only 27–38% at 180 K; i.e., the stabilities of both enols in THF- d_8 are approximately similar. The intermolecular OHO hydrogen bond to the solvent of the $E extstyle{-}$ isomer competes with the intramolecular bond in the $Z extstyle{-}$ enol. Nevertheless, when both OH signals are observed, those of $Z extstyle{-}9$ are at a significantly lower field than that for $E extstyle{-}9$.

Only one OH signal appears at rt for compounds 9 at δ 11.50–11.89., i.e., at a significantly higher field than for the enol in other solvents or at lower temperatures (e.g., for **Z-9** at lower temperatures $\delta(OH) = 13.24$ 13.50). The temperature-dependent spectra of **9a**, **9b**, and **9d** indicate an interconversion process of the two enols. Significantly, the two OH signals have a different shape: the lower field signal for **Z-9** is sharp, whereas the upper field signal for *E-9* is broad. Moreover, upon an increase in temperature, both signals broaden, but the signal for **Z-9** shows a minor shift, whereas that for **E-9** shifts significantly to an upper field (e.g., for **9d** from δ 11.17 (180 K) to 8.87 (220 K)). The NH signals behave similarly, but to a much lower extent. The lower field signal for *E***-9** does not shift significantly, while that for **Z-9** shifts systematically, e.g., for **Z-9d** from δ 10.56 (180) K) to 10.11 (280 K), with gradual broadening until they coalesce at ca. 300 K. These shifts complicate a DNMR study by using the NH signals, but the two $HC(CF_3)_2$ heptets of the two enols shift almost to the same extent (from δ 6.86, 7.00 (180 K) to 6.50, 6.65 (260 K), enabling such a study.

A consistent picture emerges from these data. THF- d_8 is a better hydrogen bond acceptor than CDCl₃ and probably CD₃CN. Whereas in systems **3**, where both the OH and the NH groups are intramolecularly hydrogen bonded to cis-ester groups, in systems **7** and **9**, only one such ester group is present, and only one intramolecular bond is present in **Z-15** and **E-15**. In THF in **Z-16**, the OH is hydrogen bonded to the CO₂R group, forming a stronger bond than the NH···O=COR hydrogen bond in **E-16**. The NH group of **Z-16** or the OH group of **E-16** intermolecularly hydrogen bond to the oxygen of the solvent (OC₄D₈), and such interaction is typically weakened upon an increase in temperature. Since the stronger hydrogen bonds cause a shift of δ (OH) and δ (NH) to a

⁽¹⁴⁾ Perrin, C. L.; Nelson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511

⁽¹⁵⁾ E.g.; Sandström, J. In *The Chemistry of Enamines*; Rappoport, Z., Ed.; Wiley: Chichester, U.K., 1994; Chapter 6.

$$H^{-\cdots} OC_4D_8$$
 $Ar - N$
 $C - OR$
 $C - OR$
 $Ar - N$
 $C - OR$
 $C - OR$

lower field, upon temperature increase, the OH of *E***-16** and the NH of *Z***-16** shift to a higher field, and the effect is larger for the stronger intermolecular O-H \cdots O bond of *E***-16**. The intramolecular OH \cdots O=C bond in *Z***-16** or the NH \cdots O=C bond in *E***-16** is almost temperature independent, and δ (OH) and δ (NH) shift only slightly (Table 4).

The reduced hydrogen bond to the solvent at the higher temperature therefore affects more the OH···O bond in *E*-16 than the already weaker NH bond in *Z*-16, and the relative stability of *Z*-16 increases. Consequently, the *Z*-enol/*E*-enol ratio increases with the temperature (Table 7).

The intramolecular hydrogen bond to the $CO_2CH(CF_3)_2$ group of enols **9** is weaker than that to the $CO_2CH_2CF_3$ group of **7** or of **3**. Consequently, the hydrogen bond stabilization of **9** with THF is of the same magnitude as the intramolecular stabilization at low temperature, making *E*-16 similarly or more stable at the low temperature.

The intramolecular OHO hydrogen bond is a configuration holder for **Z-16**, but with the increase of the temperature an enhanced competition from internal rotation around the C=C bond in the push-pull Z-16 leads to a rapid $Z \rightleftharpoons E$ interconversion, to an observed coalescence below rt, and to a single averaged OH signal at a δ (OH) value between those for **Z-16** and **E-16**. Many rotational barriers in push-pull alkenes were measured by DNMR, and the values in Table 9 resemble values measured for related systems. 15 In our systems, the barriers have a significant contribution from the intramolecular hydrogen bond. Hence, ΔG_c^{\dagger} for the internal rotation around the C=C bond in 7 and 9 is higher than that for compounds 12, which are incapable of forming such bonds, but lower than for 3a, having two intramolecular hydrogen bonds to the CO₂CH₂CF₃ group which are stronger than that for the $CO_2CH(CF_3)_2$ bond in **Z-16**. This is consistent with the behavior of system 7, whose OH···O=C bond resembles that in 3. The difference between the barriers for 7 and 9 and those for 12a,b give minimum values for the strengths of the intramolecular hydrogen bonds.

The higher stabilities of enols **Z-7** than those of **Z-9** lead to higher **Z-7**/**E-7** than the **Z-9**/**E-9** ratios. Moreover, at rt, the δ (OH) observed for the "single enol" resembles that of **Z-7**, indicating that the latter is the major constituent in the rapidly equilibrating **Z-7**/**E-7** mixture. The rotational barrier for **7a** is higher than in **9b**,c.

For enol **10** (the CO_2Me analogue of **7c** and **9c**) in $CDCl_3$, the only one OH signal at 243 and 220 K indicates that only **Z-10** is observable, whereas both **E-7** and **E-9** were observed at low temperatures. This is consistent with the stronger $O-H\cdots O=C-OR$ hydrogen bond when R=Me than when $R=CH_2CF_3$ or $CH(CF_3)_2$ of **7a** and

9a. The stronger hydrogen bond in **Z-10** is also reflected in its $\delta(\text{OH})$ at 15.15 (220 K) and ca. 15.4 (rt) and in the $\delta(\text{NH})$ of 8.95 (220 K) in CDCl₃. The $\delta(\text{OH})$ value is ca. 1 and 1.8 ppm higher and the $\delta(\text{NH})$ value is ca. 0.9 and 0.7–0.6 higher than those for **7a**–**d** and **9a**–**d**, respectively. Since the NH of **7a**, **9a**, and **Z-10** is not intramolecularly bonded, the difference in $\delta(\text{NH})$ reflects the effect of the R in the hydrogen bonded OH····O=COR moiety on $\delta(\text{NH})$. However, since $\delta(\text{OH})$ and $\delta(\text{NH})$ values of **7a** and **9a** in CDCl₃ are average values of the *E*- and *Z*-enols, this conclusion is not unequivocal.

In THF- d_8 both enols of **10** are observed, and $\delta(OH)$ and $\delta(NH)$ for **Z-10** at 220 K are 15.5 and 9.94 ppm, respectively, whereas $\delta(NH)$ for **E-10** is 11.27. The $\delta(OH)$ of **10** is 1.2 and 2.0 ppm to a lower field than in the *Z* isomers of **7** and **9**, and $\delta(NH)$ is 0.1 and 0.5 ppm to an upper field. For E-**10**, the corresponding $\delta(NH)$ values are 0.5–0.6 ppm to a lower field (Table 3). Unequivocally, the OH···O=C-OR bond is stronger for R = Me than for R = CH₂CF₃ or CH(CF₃)₂.

Comparison with the published $\delta(OH)$ and $\delta(NH)$ values for 3d and $3e^3$ suffers from the fact that the values in $CDCl_3$ for 7 and 9 are averages, while in CD_3CN enols 3 were barely observed. Nevertheless, it is clear even from the average values and by comparing the $\delta(OH)$ and $\delta(NH)$ values for Z-10 in $CDCl_3$ with those of 17.06, 11.2-11.5 for 3b,c Ar = Ph, that both values are at a lower field for 3 than for 10. Here, the effect of CN is compared with that of a CO_2R not hydrogen bonded to the OH. The more EW cyano weakens the $OH\cdots O=C$ bond more than CO_2R , and thus reduces, more than CO_2R , the electrondensity of the H-bond donor oxygen of the C=O. This is in line with the conclusion drawn above.

The effect of $CO_2CH_2CF_3$ vs CN on the hydrogen bonding in a $HO\cdots OCOCH_2CF_3$ moiety is obtained by comparing the $\delta(OH)$ and $\delta(NH)$ of 16.02 and 10.54 for **3d**, $Ar = p\text{-Me}OC_6H_4{}^3$ with 14.00 and 9.61, respectively, for **7a** in THF- d_8 at 298 K. Since the latter values differ by 0.3–0.4 ppm from those for **Z-7** at 298 K, a CO_2CH_2 - CF_3 causes at least 1.5 ppm downfield shift of a hydrogenbonded $CO_2CH_2CF_3$ to OH and 1.5 ppm upfield shift for an NH than CN. Again, this is in line with our generalizations.

Experimental Section

General Methods. Melting points, 1 H, 13 C, and 19 F NMR spectra were measured as described previously. 16 Solid-state 13 C NMR spectra were measured as described in ref 3.

Solvents and Materials. CDCl₃, THF- d_8 , DMSO- d_6 , DMF- d_7 , and the starting materials (commercially obtained) were used without further purification.

Crystallographic Data. 9b: C₁₄H₁₀F₆N₂O₃. Space group P̄1: a=11.631(4) Å, b=15.036(5) Å, c=10.028(3) Å, $\alpha=93.55(3)^\circ$, $\beta=108.67(3)^\circ$, $\gamma=70.51(3)^\circ$, V=1564(1) ų, Z=4, $\rho_{\rm calcd}=1.56$ g cm⁻³, $\mu({\rm Cu~K}\alpha)=14.11$ cm⁻¹; no. of unique reflections, 5736; no. of reflections with $I\geq 3\sigma_{\rm I}$, 3450; R=0.060, $R_{\rm w}=0.086$; **7a**: C₁₃H₁₁F₃N₂O₄. Space group P̄1: a=10.244(6) Å, b=13.334(6) Å, c=5.37(1) Å, $\alpha=96.4(1)^\circ$, $\beta=98.9(1)^\circ$, $\gamma=73.87(4)^\circ$, V=694(1) ų, Z=2, $\rho_{\rm calcd}=1.51$ g cm⁻³, $\mu({\rm Cu~K}\alpha)=12.21$ cm⁻¹; no. of unique reflections, 2537; no. of reflections with $I\geq 2\sigma_{\rm I}$, 1908; R=0.093, $R_{\rm w}=0.129$.

Trifluoroethyl Cyanoacetate. To a mixture of 2,2,2-trifluoroethanol (20 g, 0.2 mol) and dimethylaniline (24.2 g,

TABLE 11. Analytical Data and Yields for p-XC₆H₄NHC(OH)=C(CN)CO₂R^a

COI	compound		ound		calculated, %			found, %		
X	R	formula	mp, °C	yield, %	С	Н	N	С	Н	N
MeO	CH ₂ CF ₃	C ₁₃ H ₁₁ F ₃ N ₂ O ₄	290-2	94	49.38	3.50	8.86	49.06	3.75	8.65
Me	CH_2CF_3	$C_{13}H_{11}F_3N_2O_3$	>300	96	52.01	3.69	9.12	52.29	3.93	9.12
Н	CH_2CF_3	$C_{12}H_9F_3N_2O_2$	296 - 8	91	50.36	3.17	9.79	50.78	3.39	9.91
\mathbf{Br}	CH_2CF_3	$C_{12}H_8BrF_3N_2O_3$	298 - 300	98	39.48	2.21	7.67	39.65	2.29	7.36
MeO	$CH(CF_3)_2$	$C_{14}H_{10}F_6N_2O_4$	296 - 8	70	43.76	2.62	7.29	43.94	2.81	6.89
Me	$CH(CF_3)_2$	$C_{14}H_{10}F_6N_2O_3$	>300	76	45.66	2.74	7.61	45.85	2.87	7.86
Н	$CH(CF_3)_2$	$C_{13}H_8F_6N_2O_3$	294 - 6	75	44.08	2.28	7.91	44.55	2.37	7.73
Br	$CH(CF_3)_2$	$C_{13}H_7BrF_6N_2O_3$	300-2	73	36.05	1.63	6.47	36.18	1.80	6.35

^a At >180°C, the compounds turned yellow, and all of them decompose at the mp.

0.2 mol) in dichloromethane (30 mL) in a 250 mL flask, a freshly prepared cyanoacetyl chloride (from cyanoacetic acid and phosphorus pentachloride) was added dropwise with stirring at ice bath temperature. After the addition was complete, the mixture was refluxed for 2 h and then stirred at rt for 16 h. Water (100 mL) was added with stirring, the mixture was filtered, the organic layer was collected, and the aqueous layer was extracted with CH₂Cl₂ (2 \times 20 mL). The combined organic solution was washed with 2 N H₂SO₄ (10 \times 50 mL) until it was free of dimethylaniline, then with water (2 \times 50 mL), and with 10% sodium sulfate (50 mL). The inorganic salt was filtered, the solvent was evaporated, and the residue was distilled at reduced pressure, giving 10 g (30%) of the colorless ester, bp 76–78 °C at 1–2 Torr.

¹H NMR (CDCl₃, 298 K, 400 MHz) δ : 3.65 (2H, s), 4.59 (2H, q, J=8.3 Hz). ¹⁹F NMR (CDCl₃, 298 K, 400 MHz) δ : -74.80 (t, J=7.5 Hz). ¹³C NMR (CDCl₃, 298 K, 400 MHz) δ : 24.16 (t, J=138 Hz), 61.64 (tq, $J_t=152$ Hz, $J_q=37$ Hz), 112.26 (t, J=10.6 Hz), 122.26 (qt, $J_q=277$ Hz, $J_t=4.7$ Hz), 162.04 (m). Anal. Calcd for C₅H₄F₃NO₂: C, 35.94; H, 2.41; N, 8.38. Found: C, 35.68; H, 2.38; N, 8.13.

Reaction of Trifluoroethyl Cyanoacetate and Aryl Isocyanates. The following procedure is also representative for the reaction with p-Me, p-MeO, and p-Br phenyl isocyanates. A mixture of trifluoroethyl cyanoacetate (0.84 g, 5 mmol) and triethylamine (1.02 g, 10 mmol) in dry DMF (5 mL) was stirred for 5 min, PhNCO (0.59 g, 5 mmol) was added, and the solution was stirred for 6 h. Ice cooled 2 N HCl (50 mL) was then added with stirring. The white precipitate formed was filtered and dried in air to afford 1.3 g (91%) of the crude **6c**, mp 296–8 °C. Anal. Calcd for $C_{12}H_9N_2F_3O_3$: C, 50.36; H, 3.17; N, 9.79. Found: C, 50.78; H, 3.39; N, 9.91. The NMR spectral data for **6a**–**d** are given in Tables 3–5 and S11–S13, and the mp and microanalysis are given in Table 11.

1,1,1,3,3,3-Hexafluoroisopropyl Cyanoacetate. 1,1,1,3,3,3-Hexafluoroisopropyl cyanoacetate was prepared according to the procedure described above for preparing trifluoroethyl cyanoacetate. Bp 60-2 °C/7 mmHg. Yield 16%. ¹H NMR (CDCl₃, 298 K, 400 MHz) δ : 3.77 (2H, s), 5.80 (1H, heptet, J = 5.8 Hz). ¹9F NMR (CDCl₃, 298 K, 400 MHz) δ : -74.23 (d, J

= 5.6 Hz). 13 C NMR (CDCl₃, 298 K, 400 MHz) δ : 24.00 (t, J = 138 Hz), 67.83 (dm, J_d = 152 Hz, J_m = 35 Hz), 111.46 (t, J = 10 Hz), 119.86 (qm, J_q = 282 Hz), 161.07 (m). Anal. Calcd for C₆H₃F₆NO₂: C, 30.66; H, 1.29; N, 5.96. Found: C, 30.95; H, 1.23, N, 5.80.

Reaction of Hexafluoroisopropyl Cyanoacetate with Phenyl Isocyanate. (a) Reaction with Phenyl Isocyanate. To a stirred solution of hexafluoroisopropyl cyanoacetate (0.59 g, 2.5 mmol) and triethylamine (0.51 g, 5 mmol) in THF (5 mL), phenyl isocyanate (0.29 g, 2.5 mmol) was added, and the mixture was stirred for 24 h at rt and then poured into icecooled 2 N HCl (50 mL) with stirring. The white precipitate formed was filtered and washed with water to give 0.66 g (75%) of **9c**. Crystallization from ethyl acetate gave white needles, mp 294–6 °C. Anal. Calcd for $C_{13}H_8F_6NO_3$: C, 44.08; H, 2.28; N, 7.91. Found: C, 44.55; H, 2.37; N, 7.73.

(b) Reaction with Other Aryl Isocyanates. The same procedure was applied for p-methoxyphenyl isocyanate (0.37 g), giving **9a** (0.67 g), for p-methyl isocyanate (0.33 g), giving **9b** (0.79 g), and for p-bromophenyl isocyanate (0.5 g), giving **9d** (0.8 g). Mps and microanalysis of all compounds are in Table 11, and ¹H, ¹³C, and ¹⁹F NMR spectra are in Tables 3–5 and S11–S13.

Acknowledgment. We are indebted to Professor Silvio Biali for discussions, to Dr. Shmuel Cohen for the X-ray structure determination, and to the Israel Science Foundation for support. D.C. thanks the financial support of the MUIR COFIN 2001, Rome.

Supporting Information Available: Figures S1–S3 of ORTEP of **Z-7a** and stereoviews of **Z-7a** and **Z-9b**, Tables S1–S10 of crystallographic data for **Z-7a** and **Z-9b**, and Tables S11–S13 of ¹H, ¹³C, and ¹⁹F NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020464A